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Stochastic resonance: influence of a f−κ noise spectrum
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Abstract. With the aim of studying stochastic resonance (SR) in a double-well potential when the noise
source has a spectral density of the form f−κ (with varying κ), we have extended a procedure introduced
by Kaulakys et al. (Phys. Rev. E 70, 020101 (2004)). In order to achieve an analytical understanding of
the results, we have obtained an effective Markovian approximation that allows us to make a systematic
study of the effect of such noise on the SR phenomenon. A comparison of the numerical and analytical
results shows an excellent qualitative agreement indicating that the effective Markovian approximation is
able to correctly describe the general trends.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

Stochastic resonance (SR) is one of the most interesting
noise-induced phenomena, that arises from the interplay
between deterministic and random dynamics in a nonlin-
ear system [1]. This phenomenon has been largely studied
for more than two decades due to its great interest not
only from a basic point of view but also for its technolog-
ical interest and biological implications [1,2].

Most of those studies have used white or colored noises,
with a few exceptions where wider classes of noise were
considered. For instance, in [3] SR in systems subject to
a colored and non Gaussian noise was studied. Due to the
ubiquity of f−κ noise in a large variety of physical, bio-
logical and even economical phenomena [4], it is apparent
that there is interest in the effect of such a particular char-
acteristic of the noise’s power spectral density (PSD) on
the response of a system subject to it. This study is the
objective of the present study. However, there are several
studies closely related with the present one, as indicated
by the following examples. In [5], the authors studied,
through numerical simulations, the behavior of the signal-
to-noise ratio (SNR) gain in a level crossing detector and
a Schmidt trigger, when subject to a colored noise com-
posed of a periodic train pulse plus a Gaussian f−κ noise
with variable κ. Their results indicate that the maximum
of the SNR is larger for white noise, and moves towards
large noise intensities for increasing κ. In [6] experimental
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evidence was found that noise can enhance the homeo-
static function in the human blood pressure regulatory
system. Related to this, other experimental evidence was
found in [7] that an externally applied f−1 noise, added
to the usual white noise, contributes to sensitizing the
baroflex function in the human brain. In [8], a model of
traffic junction with a main and a side road, it was found
that the effect of a Gaussian f−κ noise with κ ≥ 0 showed
an overall traffic efficiency enhancement.

It has been experimentally demonstrated [9] that an
SR-like effect can be obtained in rat sensory neurons with
white, f−1 and f−2 noise, and that, under particular con-
ditions, f−1 noise can be better than white noise to en-
hance a neuron’s response. Indeed, it was shown that it is
possible to enhance the SR effect in a FitzHugh-Nagumo
model submitted to a colored noise with f−κ [10], and
that the optimal noise variance of SR could be minimized
with κ ≈ 1 [11].

To our knowledge, there has been no theoretical study
on the connection of the PSD noise characteristic and
the enhancement of the stochastic resonance effect. The
lack of a theory, and the work of Kaulakys and collabora-
tors [12], who have introduced a method to generate f−1

noise over a wide range of frequencies (see also [13,14]),
has motivated us to discuss how to extend such a pro-
cedure for positive and negative values of the stochastic
variable. Furthermore, we exploit this procedure to ana-
lyze analytically the effect of a noise spectrum of the form
f−κ with varying κ, on the SR phenomenon in a simple
double-well potential.
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In the following Section we present the model system
to be studied and the procedure to generate the f−κ noise.
Afterwards we discuss an effective Markovian approxima-
tion, and exploit it to study the SR phenomenon. Finally
we discuss the results and draw some general conclusions.

2 The system

2.1 Stochastic differential equations

The starting point of our analysis is the following system
of stochastic differential equations

ẋ = f(x) + g(x)y(t) (1)

ẏ =
u(y)
τ

+
D

τ
v(y)ξ(t). (2)

The first equation describes the evolution of the coordi-
nate x of a particle diffusing in a double well potential
U0(x), given by U0(x) = − ∫ x

f(ζ)dζ = x4

4 − x2

2 . This
particle is subject to a noise y(t) through a multiplica-
tive constraint given by the general function g(x), to be
defined later.

The second equation corresponds to the Langevin
equation driving the noise y(t), inspired by the work
of Kaulakys et al. [12]. We note in passing that when
u(y) = −y and v(y) = 1, y(t) reduces to the well known
Ornstein-Uhlenbeck process. The choice of this partic-
ular form for the evolution of y is due to our inten-
tion to preserve the properties of the PSD discussed
in [12]. In this last equation we consider a new potential
V (y) = − ∫ y

u(s)ds, and a (white) noise ξ(t) that enters in
a multiplicative form with a function v(y). The strength of
this multiplicative noise will be proportional to the param-
eter D, while the time evolution of the complete equation
is characterized by the parameter τ .

Next, we describe in detail the non linear function pre-
viously introduced in equations (1, 2). We consider the
following form for the function u(y)

u(y) = αy3 − βy5 + s(y)y4 (3)

where s(y) indicates the sign of y (i.e, −1 if y < 0 and +1
if y ≥ 0). For the function v(y) we adopt

v(y) = |y|µ + c, (4)

where both the exponent µ and the constant c are positive
(>0).

The above indicated forms change the symmetry of the
potential V (y) and, in addition, when compared with the
work in [12], increases the range of the noise variable from
[0, +∞) to (−∞, +∞), as is shown in Figure 1. The pa-
rameter c allows the random variable y to adopt negative
values when c > |y|µ.

2.2 Characteristic of the noise variable y

The most relevant aspect of the process y is its power
spectral density with a 1/f frequency behavior. Kaulakys

Fig. 1. Symmetric potential V (y) as derived from equation (3).
We have used the following values: α = 5 × 10−4 and β = 1

2
.

Fig. 2. A typical realization for equation (2) using µ = 5/2
and c = 1 × 10−4. The PSD of this realization shows a 1/f
behavior, see Figure 3.

et al. [12] have shown that when c = 0 and µ = 5/2, the
noise y exhibits a 1/f functionality over a wide range of
frequencies. For c > 0, but small, this property is still
valid, as we show in Figures 2 and 3.

When the exponent µ changes, the PSD behaves as
1/fk, with k < 1 for µ < 5/2. We will use this property
to evaluate the mean-first-passage-time (MFPT) and, af-
terwards, the signal-to-noise ratio (SNR). In particular we
have used µ = 3/2, yielding k � 3/4.

3 Effective Markovian theory

In order to be able to obtain some analytical results, we
resort here to an effective Markovian approximation, that
allows us to reduce, in the variable’s space, the original
non Markovian problem to a Markovian one. The ulti-
mate goal of this procedure is to achieve a consistent sin-
gle variable Fokker-Planck approximation for the proba-
bility distribution of the original variable. This analysis is
analogous to the so called unified colored noise approxi-
mation (UCNA) (introduced in [15,16]), which consists of
an adiabatic elimination-like procedure. Exploiting such
an approach we are able to find an effective Markovian
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Fig. 3. PSD for the variable y, as indicated in equation (2).
We used the same values of parameters as in Figure 2. The
white line corresponds to a linear fitting, resulting in a slope
κ = −1.004 ± 0.005.

Fokker-Planck equation (FPE) for the probability density
P (x, t). The procedure is the following (the prime will in-
dicate derivation respect to the variable x).

3.1 Adiabatic procedure

Deriving equation (1) respect to the time we have

ẍ = f ′(x)ẋ + g′(x)ẋy + g(x)ẏ. (5)

Now, assuming an adiabatic behavior, we eliminate ẍ, and
using equation (2) we obtain

0 � f ′(x)ẋ + g′(x)ẋ
[
ẋ − f(x)

g(x)

]

+ g(x)
[
u(Z(x))

τ
+

Dv(Z(x))ξ(t)
τ

]

, (6)

where we have defined Z(x) = Z0(x) + Z1(x), with
Z0(x) = − f(x)

g(x) and Z1(x) = ẋ
g(x) . Now, in order to ob-

tain a useful effective Markovian description, we need to
resort to further approximations, as follows

u(Z(x)) ≈ u(Z0(x)) + u′(Z0(x))Z1(x) (7)

and similarly for v

v(Z) ≈ v(Z0) + v′(Z0)Z1(x). (8)

Adopting now g(x) = 1, that implies Z0 ≡ −f(x) and
Z1 ≡ ẋ, we have

0 = f ′(x)ẋ+
u(Z0(x))

τ
ẋ+D

v(Z0(x))
τ

ξ(t)+O(ẋ ξ(t)). (9)

From the above, the effective equation for the process x
adopts the following form

ẋ = −u(Z0(x)) + Dv(Z0(x))ξ(t)
τf ′(x) + u′(Z0(x))

= A1(x) + B1(x)ξ(t),

(10)

where we can write the limits for A(x) and B(x) when
τ → 0 as

A1(x) → Z0(x)
3

= A(x), (11)

B1(x) → −Dv(Z0(x))
u′(Z0(x))

= B(x). (12)

Finally, using the above indicated approximations, the
stochastic differential equation for the process x reads

ẋ = A(x) + B(x) ξ(t), (13)

with A(x) and B(x) defined above.

3.2 Fokker-Planck equation

The FPE associated with the Langevin equation, equa-
tion (13), is

∂

∂t
P (x, t) = − ∂

∂x
[A(x)P (x, t)] +

1
2

∂2

∂x2
[B2(x)P (x, t)],

(14)
where the Ito prescription was used [17]. As is well known,
the stationary probability distribution (pdf) for this FPE
is given by [17]

P st(x) =
N

B(x)
exp {−Φ(x)}, (15)

where N is a normalization factor, and

Φ(x) = 2
∫ x A(ζ)

B(ζ)2
dζ. (16)

3.3 Mean-First-Passage-Time and SR

The indicated FPE and its associated pdf allow us to
obtain the mean-first-passage-time (MFPT) through a
Kramers-like approximation. Using known expressions we
obtain for the MFPT [17]

T (x0) = 2
∫ x0

a

dy

Ψ(y)

∫ y

−∞

dz Ψ(z)
B(z)2

, (17)

where

Ψ(x) = exp
{

2
∫ x A(ζ)

B(ζ)2
dζ

}

. (18)

In order to study SR, as usual, we introduce an external
signal in the form of a term rocking the double well po-
tential: U(x) = U0(x) + S(t), with S(t) = S0 sin(ωt) (in
what follows we adopt ω = 1.33 × 10−5). Exploiting the
so called “two-state approximation” [1] (see also [18]), we
define the SNR as the ratio of the strength of the output
signal and the broadband noise output evaluated at the
signal frequency ω, obtaining [1]

SNR ∝
{

1
T

dT

dS

}

S=0

, (19)

where the derivative of the T in the above expression is
evaluated, as indicated, at S = 0.
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Fig. 4. SNR obtained when simulating the full set of equa-
tions (1, 2). Here σ corresponds to the noise intensity de-
fined through the distribution width, as indicated in the text.
Squares and circles corresponds for µ = 3/2 and µ = 5/2 re-
spectively. The lines are a guide to the eye only.

Fig. 5. SNR obtained using equation (19), as derived from the
two state theory. Continuous and dashed lines correspond to
µ = 3/2 and µ = 5/2 respectively.

4 Results and conclusion

We have carried out extensive numerical simulations of
the full set of equations (1) and (2) in order to obtain the
SNR. The results are shown in Figure 4. Also, in Figure 5
we show the SNR computed using the effective Markovian
theory, obtained through equations (17) and (19). In order
to be able to compare the results we have normalized the
curves. Also, in order to have a well defined noise inten-
sity σ, the variance of y(t) (as described by the Eq. (2))
was obtained numerically in all the simulation, and di-
rectly related to σ. As in Sections 3.2 and 3.3, here we
have assumed g(x) = 1.

The comparison of Figures 4 and 5 makes it apparent
that the results obtained using the effective Markovian
theory are in very good (qualitative) agreement with those
from simulations. This is in accord with previous results
obtained for different systems [3,16]. We can conclude that
such an effective Markovian (UCNA-like) approximation,
as discussed in Section 3, offers an adequate framework
to obtain effective Markovian approximations for a much

Fig. 6. Effective potential, equation (18), showing the different
behavior of the wells for different values of the exponent µ:
continuous line µ = 5/2, dotted line µ = 3/2. Due to the
symmetry, we only show positive values of x.

wider class of systems than the one to which it was origi-
nally applied [15].

The above results are in complete agreement with
those of [5]. That is; the maximum of the SNR is larger for
white noise, and it moves towards large noise intensities
for increasing κ. In order to gain some physical insight
into this behavior it is worth remarking that the function
defined by equation (18) is directly related to an effective
potential within the approximation we used

Veff (x) ≈ D ln Ψ(x) = D

{

2
∫ x A(ζ)

B(ζ)2
dζ

}

. (20)

The behavior of such a potential reveals the consequences
of changing the exponent µ: when µ = 5/2 (i.e. the PSD
is 1/f), the effective potential shows a well defined well;
but as µ decreases the well is less defined as shown in Fig-
ure 6. Such a behavior of the effective potential explains
why the SNR increases when µ decreases. The general
theory shows that the SNR increase is proportional to the
Kramers rate rK , that is given by

rK =
1√
2π

exp
{

−∆Veff

D

}

, (21)

where ∆Veff is the height of the barrier in the effective
potential separating the attractors. Hence, the reduction
of the SNR with increasing κ (or decreasing µ) could be
directly related to the marked reduction of the barrier
separating the attractors in the effective potential picture.
This also explains the reason for the shift of the SNR
maximum towards larger values of the noise intensity.

In conclusion, this is a first step towards an analyti-
cal understanding of two very important, connected, and
ubiquitous, aspects in natural processes. These are the
1/fk behavior of noise’s PSD, and its role in signal detec-
tion via the SR mechanism. The physical picture provided
by the indicated effective Markovian approximation offers
an adequate framework to analyze and understand the
main qualitative trends of such a phenomenon. Further-
more, we expect to apply the same scheme to other noise
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induced phenomena when subject to 1/fk noise. This will
be the subject of further work.
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